Abbaszadeh, M., Jabbari Nooghabi, M., & Rounaghi, M. (2020). Using Lyapunov’s method for analysing of chaotic behaviour on financial time series data: a case study on Tehran stock exchange. National Accounting Review,2(3): 297-308
Aladag, C.H, Yolcu, U., Egrioglu, E., & Dalar, A.Z.(2012). "A new time invariant fuzzy time series forecasting method based on particle swarm optimization", Appl. Soft Computer,12(2) : 3291–3299.
Amiri, M., Shariat Panahi, M., & Banakar, M. H. (2019). "Choosing the optimal stock portfolio using multi-criteria decision making", Tehran Stock Exchange Quarterly, 3(11): 24-25.
Bates, J.M., Granger, & C.W.J. (1969)." The combination of forecasts". Oper. Res. Q. No.20:89-98.
Coleman R.T.(1989). "Combining forecasts: A review and annotated bibliography". Int. J. Forecast, 5 : 559–583.
Donate, J., Cortez, P., Sanchez, G.G. & Migue, A.(2013)."Time sereis forecasting using a weighted cross-validation evolutionary artificial neural network ensemble". Neurocomputing, 109 (3): 27–32.
Huang, S.-C., Chuang, P.-J., Wu, C.-F., & Lai, H.-J.(2010)." Chaos-based support vector regressions for exchange rate forecasting". Expert Syst. 37 : 8590 8598.
Hussain, A.J., Al-Jumeily, D., Al-Askar, H., & Radi, N.(2016)." Regularized dynamic selforganized neural network inspired by the immune algorithm for financial time series prediction". Neurocomputing , 188 : 23–30.
Li, C., Lin, C. W., & Huang, H. (2011)." Neural Fuzzy Forecasting of the China Yuan to US Dollar Exchange Rate – A Swarm Intelligence Approach". In: Proceedings of the Second International Conference, ICSI 2011, LNCS 6728, Chongqing, China, June 12-15, 2011, pp. 616–625.
Makridakis, S., Wheelwright, S., & Hyndman, R.(1998). Forecasting: methods and applications, edition 3 ed., New York: John Wiley & Sons,
Mitsa, T.(2010). Temporal Data Mining, Chapman & Hall/ CRC Data mining and knowledge discovery series, CRC Press, US, 2010.
Pavlidis, N.G., Tasoulis, D.K., & Vrahatis, M.N. (2003)."Financial forecasting through unsupervised clustering and evolutionary trained neural networks". In: Proceedings of 2003 Congress on Evolutionary Computation, CEC'03, volume 4, Canberra, Australia, 8–12 Dec, 2003, pp. 2314–2321.
Pelikan,E., De Groot, C., & Wurtz, D.(1992)."Power consumption in West-Bohemia: improved forecasts with decorrelating connectionist networks". Neural Netw. 2(4) : 701–712.
Pradeepkumar,D., & Ravi,V.(2017). "Forex rate prediction: A hybrid approach using chaos theory and multivariate adaptive regression splines", in: Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications, Springer, Singapore, Bhubaneshwar, Odisha, India, 16-17 September 2016, pp. 219–227.
Pulido, M., Melin, P., & Castillo, O.(2014)."Optimization of ensemble neural networks with fuzzy integration using the particle swarm algorithm for the US Dollar/MX time series prediction". In: 2014 IEEE Conference on Norbert Wiener in the 21st Century (21CW), Boston, MA, USA, 24-26 June 2014, pp. 1–7.
Ravi, V., Lal, R., & Kiran, N. (2012)."Foreign Exchange Rate Prediction using Computational Intelligence Methods".International Journal of Computer information System, 4 : 659–670.
Reid, D. J.(1968). "Combining three estimates of gross domestic product". Economica, No. 35:68-86.
Rout, M., Majhi, B., Majhi, R., & Panda, G.(2014)." Forecasting of currency exchange rates using an adaptive ARMA model with differential evolution based training". J. King Saud. Univ. - Comput. Inf. Sci. 26 (4) :7–18.
Sermpinis, G., Stasinakis, C., Theofilatos, K., & Karathanasopoulos, A.(2015)."Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms-Support vector regression forecast combinations". Eur. J. Oper. Res. No.247 : 831–846.
Sermpinis, G., Theofilatos, K., Karathanasopoulos, A., Georgopoulos, E., & Dunis, C.(2012)." A Hybrid Radial Basis Function and Particle Swarm Optimization Neural Network Approach in Forecasting the EUR/GBP Exchange Rates Returns", in: Proceedings of the 13th International Conference on Engineering Applications of Neural Networks, EANN 2012, CCIS 311, London, UK, 20-23 September 2012, pp. 413– 422.
Shen, F., Chao, J., & Zhao, J.(2015)." Forecasting exchange rate using deep belief networks and conjugate gradient method". Neurocomputing, No.167 : 243–253.
Svitlana, G. (2016)." Neural networks performance in exchange rate prediction". Neurocomputing, 172(3): 446–452.